If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10a^2+20a-1=0
a = 10; b = 20; c = -1;
Δ = b2-4ac
Δ = 202-4·10·(-1)
Δ = 440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{440}=\sqrt{4*110}=\sqrt{4}*\sqrt{110}=2\sqrt{110}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{110}}{2*10}=\frac{-20-2\sqrt{110}}{20} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{110}}{2*10}=\frac{-20+2\sqrt{110}}{20} $
| -3(s+9)=3 | | .3d+7.9=9.1 | | r+20+9r=-20-10 | | 26=(l+5) | | 52+3x-12=70 | | 19+y=29 | | 26=2(l+3) | | 41=w/3 | | 55=4j | | 0=x/13 | | 14=w+12 | | g/38=0 | | 1=p/25 | | 17=10+t | | (43)+(x-7)=90 | | 7x-1=-(3x+1) | | 61=t/2 | | 3x+4+4x=17 | | 26d=182 | | E^4^x=11 | | u+802=933 | | Y+1/2x=-8 | | c/9=27 | | 8=g/18 | | c+314=897 | | 599=s-117 | | X^2+4=40-5x | | 708=2j | | 479=f+407 | | p+439=783 | | 21r=525 | | 2(q-3)=3(-q+4) |